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A thin plate accelerated or decelerated in a free-molecular gas at rest by a constant external force is
considered. The force is in the direction perpendicular to the plate. In this situation, the plate velocity ap-
proaches its final constant velocity as time goes on. It is shown numerically that, under the diffuse-reflection
boundary condition, the difference between the plate velocity and its final value decreases in proportion to an
inverse power of time. This agrees with the previous theoretical result obtained under the assumption that the
initial plate velocity is sufficiently close to the final one.
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I. INTRODUCTION

In kinetic theory of gases, the two limiting cases, the con-
tinuum limit of vanishing Knudsen number �the mean free
path of gas molecules divided by the characteristic length of
the system� and the free-molecular limit of infinitely large
Knudsen number, have been studied extensively. The former
limit clarifies the relation between kinetic theory and fluid
dynamics �1–6�. In the latter limit �free-molecular gas or
Knudsen gas�, the fact that the collision term of the Boltz-
mann equation can be neglected simplifies the analysis dra-
matically and the basic properties and phenomena appear to
have been understood completely �2,3,6,7�. However, most
of the existing works are devoted to steady flows of a gas or
steady motions of a body and little is known about problems
containing unsteady motion of a body �motion with accelera-
tion, deceleration, or rotation of a nonsymmetric body�. The
difficulty in this case arises from the fact that, because of the
absence of intermolecular collisions, the gas molecules im-
pinging on the body may have a long memory and be af-
fected by the trajectory of the body in the far past; i.e., there
exists the effect of long memory. Indeed, this fact was men-
tioned already in Sec. H9 in �7�. However, to the best of the
authors’ knowledge, there is no systematic study of the ef-
fect. The present study, as well as the preceding studies
�8–11�, aims at clarifying the memory effect in the problems
with an unsteady body motion by considering a simple prob-
lem of a body moving in a free-molecular gas with accelera-
tion or deceleration. This is a numerical study complement-
ing the previous mathematical works �8–11�.

Let us consider a motion of a body in a uniform fluid �not
a free-molecular gas� at rest caused by a constant external
force. We assume that the body starts its motion with an
initial velocity parallel to the external force and moves in the
direction parallel to the external force without rotation be-
cause of a constraint or the symmetry of the body. A drag by
the fluid acts on the body and its velocity approaches a con-
stant value �final velocity� for which the drag counterbal-
ances the external force. If we assume that the drag is pro-
portional to the speed of the body, its velocity approaches the
final velocity exponentially fast. That is, if we let � be the
time variable, vw��� the velocity of the body in the direction

of the external force, and vw� ��0� its final value, then for
sufficiently large �,

�vw� − vw���� � C1e−C2� �1�

holds, where C1 and C2 are positive constants.
However, if the fluid is a free-molecular gas in an equi-

librium state at rest, the manner of approach to the final
velocity is quite different from Eq. �1� �8–11�. Let us assume
that the body is a circular disk �with or without thickness� of
dimension d �d=1,2 ,3� and moves in the gas in the direction
perpendicular to the disk. More specifically, the body is a
real circular disk for d=3, an infinite plate with a finite width
for d=2 and an infinite plate for d=1 �see Fig. 1; in �8,9,11�
the gas molecules are assumed to move on the plane for d
=2 and on the line for d=1, but there is no essential differ-
ence�. In this case, the approach to the final velocity is slow
and is proportional to an inverse power of time. That is, for
sufficiently large �,

�vw� − vw���� � C1��
−n �2�

holds, where C1� is a positive constant, and n is an integer,
which depends on the dimension d of the disk and the model
of gas-surface interaction. In �8,9�, it was proven that n=d
+2 when the gas molecules undergo specular reflection �or
elastic collision� on the surface of the disk. The proof was
extended to the case of a general convex body and it was
shown that the same is true in this case �10�. Subsequently, it
was shown in �11� that n=d+1 when the gas molecules un-
dergo diffuse reflection �or reflection with complete accom-
modation�. Moreover, as proven in �9� for the specular re-
flection, if the initial velocity vw0 �in the direction of the

FIG. 1. A circular disk in a free-molecular gas. �a� Circular disk
�d=3�, �b� infinite plate with a rectangular cross section �d=2�, and
�c� infinite plate with a finite thickness �d=1�.
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external force� is greater than the final velocity �0�vw�

�vw0�, the disk velocity first decreases to a velocity smaller
than the final one and then approaches it from below.

Law �2� is not exponential and this may appear somewhat
surprising. The reason for this behavior is attributed to the
presence of recollisions between the gas molecules and the
disk. In fact, when it is accelerated, the disk can catch up
with a gas molecule already hit by the disk and hit it again.
In other words, the disk can hit the same molecule succes-
sively giving rise to a sequence of recollisions whose time
intervals can be arbitrarily large. This creates a long tail
memory, which is the cause of power law �2�. In particular,
in the presence of recollisions, the assumption to take a drag
force proportional to the velocity of the disk is no more valid
even when the velocity is small. If we ignore recollisions, for
example, assuming that the disk always hits new molecules
at a given thermal equilibrium, the behavior becomes that of
Eq. �1�. It is reasonable to expect that the effect of recolli-
sions can be destroyed if the background is not a free-
molecular gas but a gas with intermolecular collisions. In
this case we can say that our result remains valid, not as a
strict asymptotic behavior, but as a transient behavior. From
an experimental point of view, it is delicate to observe such
an effect and the authors are not aware of experiments in this
direction. However, we should emphasize that the effect of
recollision plays an important role when a body undergoes
unsteady motion in a highly rarefied gas. It is also worth
mentioning that it was already known that recollisions can
produce a power-law decay. In fact the velocity-velocity cor-
relation of a tagged particle of a one-dimensional �1D� free
gas decays as �−3 �see �12��.

The results in �8–11� described above have been proven
under the condition that the initial velocity of the disk is
sufficiently close to the final velocity, i.e.,

�vw� − vw0�/�2kT0/m��1/2 � 1, �3�

where T0 is a reference temperature �e.g., the temperature
of the ambient gas�, k is the Boltzmann constant, and m�

is the mass of a molecule. Since this restriction is imposed
by mathematical technicalities rather than physical situa-
tions, one cannot know how small it should be. In addition,
the slow approach to the final steady motion is caused by
the memory effect, so that it is not obvious whether the same
results hold or not for an arbitrary initial velocity that does
not satisfy Eq. �3�. In the present study, therefore, we inves-
tigate this problem numerically and try to give a numerical
evidence for the case of diffuse reflection. The reason why
we restrict ourselves to the case of the diffuse reflection,
rather than the specular reflection, will be explained in
Sec. V D.

The origin of the problem of a specularly reflecting disk
treated in Refs. �8,9� is explained from the point of view of
particle dynamics in �8�. It should be remarked that the same
problem has also been considered in connection with the
so-called piston problem, which is a fundamental problem in
statistical physics �see Refs. �13,14� and the references
therein�. For other types of obstacle-background interaction,
the reader is referred to �15,16� �see also the references in
�8–11��.

II. FORMULATION OF THE PROBLEM

A. Problem, assumptions, and notations

In the present study, we consider a rectangular plate of
dimension d without thickness instead of a circular disk for
convenience of the numerical analysis. That is, the body is a
real rectangular plate for d=3, an infinite plate with a finite
width for d=2, and an infinite plate for d=1 �Fig. 2�. How-
ever, since the actual computation will be done mostly for
d=1 and 2, we formulate the problem for the two-
dimensional �2D� problem �d=2�.

Let us consider an infinite expanse of an ideal gas in an
equilibrium state at rest at temperature T0 and density �0.
Suppose that an infinitely long plate with width L and with-
out thickness, kept at temperature T0, is fixed in the gas.
Taking the X1 axis perpendicular to the plate, the X2 axis in
the width direction, and the X3 axis in the infinitely long
spanwise direction, we assume that the plate is located at
X1=0, −L /2�X2�L /2, and −��X3�� �Fig. 2�b��. The
plate is subject to a constant external force F�	0� per unit
mass in the direction of the positive X1 axis. At �=0, the
plate is released and launched with an initial velocity vw0 in
the X1 direction. Then, it moves along the X1 axis and ap-
proaches the final steady motion with a constant velocity
�final velocity�. We investigate the motion of the plate, with
special interest in the rate of approach to the final steady
motion, under the following assumptions:

�i� The behavior of the gas is described by the Boltzmann
equation �2,3,6�.

�ii� The gas is so rarefied that the collisions between the
gas molecules can be neglected �free-molecular gas or Knud-
sen gas� �2,3,6�, and no external force acts on the gas mol-
ecules.

�iii� The gas molecules reflected on the plate are distrib-
uted according to the half-range Maxwellian distribution
characterized by the temperature and velocity of the plate
and there is no net mass flux across the plate �diffuse reflec-
tion� �2,3,6�.

Before presenting the basic equations, we summarize the
notations used in the paper. We first introduce �and repeat�
dimensional quantities: the Xi is the Cartesian coordinate
system in space, � is the time variable, 
i is the molecular
velocity, Xw��� is the position �X1 coordinate� of the plate at
time �, vw��� is the corresponding velocity �in the X1 direc-
tion� of the plate, vw0 is the initial value of vw��� at �=0, vw�

is the final steady velocity of the plate �vw�=lim�→�vw����,
f̃�Xi ,
i ,�� is the velocity distribution function of the gas mol-
ecules, F is the external force acting on the plate per unit

FIG. 2. A rectangular plate without thickness in a free-molecular
gas. �a� Rectangular plate �d=3�, �b� infinite plate with a finite
width �d=2�, and �c� infinite plate �d=1�.
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mass in the positive X1 direction, G��� is the drag acting on
the plate per unit mass in the X1 direction, and M is the mass
of the plate per unit area. Then, we introduce the dimension-
less counterparts xi, t, �i, xw, uw, uw0, uw�, f , F, G, and M by
the following equations:

xi = Xi/L, t = �/�0,

�i = 
i/�2kT0/m��1/2, xw�t� = Xw���/L ,

uw�t� = vw���/�2kT0/m��1/2, uw0 = vw0/�2kT0/m��1/2,

uw� = vw�/�2kT0/m��1/2, �4�

f�xi,�i,t� = f̃�Xi,
i,��/�0�2kT0/m��−3/2,

F = F/L�0
−2, G�t� = G���/L�0

−2,

M = M/�0L ,

where �0=L�2kT0 /m��−1/2 is the reference time, k the Boltz-
mann constant, and m� the mass of a gas molecule.

B. Basic equations

In the present spatially two-dimensional problem in which
the physical quantities do not depend on x3, we can eliminate
the third component �3 of the molecular velocity by consid-
ering the following marginal distribution function g:

g�x1,x2,�1,�2,t� = �
−�

�

f�x1,x2,�i,t�d�3. �5�

Then, the Boltzmann equation for a free-molecular gas reads

�g

�t
+ �1

�g

�x1
+ �2

�g

�x2
= 0. �6�

The corresponding initial condition is

g = g0, g0 = �−1 exp�− �1
2 − �2

2�, �t = 0� , �7�

and the boundary condition �diffuse reflection� on the plate is
written as

g�x1,x2,�1,�2,t� = gw�x2,�1,�2,t� ,

�x1 = xw�t�,−
1

2
� x2 �

1

2
,�1 − uw�t� � 0	 , �8a�

gw�x2,�1,�2,t� = �−1�w�x2,t�exp�− ��1 − uw�t��2 − �2
2� ,

�8b�

�w�x2,t� = � 2
��
−�

� �
�1−uw�t��0

��1 − uw�t��

�g„xw�t�,x2,�1,�2,t…d�1d�2. �8c�

Here, x1=xw�t� indicates x1=xw�t�0, so that ��x1 ,x2� �x1
=xw ,−1 /2�x2�1 /2� stands for the surface of the plate

facing to the positive x1 axis �plus sign� or that facing to the
negative x1 axis �minus sign�. In Eq. �8a�–�8c� and in what
follows, the upper �or lower� signs go together.

The equation of motion of the plate is given as

dxw�t�/dt = uw�t�, duw�t�/dt = F − G�t� , �9�

where the dimensionless drag G�t� is expressed in terms of
the velocity distribution function on the plate as follows:

G�t� = G+�t� + G−�t� , �10a�

G�t� = 
1

M
�

−1/2

1/2 �
−�

� �
�1−uw�t��0

��1 − uw�t��2

�g�xw,x2,�1,�2,t�d�1d�2

+ �
−�

� �
�1−uw�t��0

��1 − uw�t��2

�gw�x2,�1,�2,t�d�1d�2�dx2. �10b�

Here, G+�t� and G−�t� indicate, respectively, the drag acting
on the surface at xw+�t� and xw−�t�. The initial condition for
Eq. �9� is

xw�0� = 0, uw�0� = uw0. �11�

We are going to solve numerically the coupled systems,
Eqs. �6�, �7�, and �8a�–�8c� and Eqs. �9�, �10a�, �10b�, and
�11�.

In the spatially one-dimensional problem �d=1�, in which
the plate is an infinitely wide plate in the x2x3 plane and the
physical quantities depend only on x1, we can also eliminate
the second component �2 of the molecular velocity by intro-
ducing the marginal distribution function

ḡ�x1,�1,t� = �
−�

� �
−�

�

f�x1,�i,t�d�2d�3. �12�

Therefore, the problem is much simpler. In this case, since
there is no length scale related to the plate, we need to intro-
duce an appropriate length scale �see Sec. V A�. In the spa-
tially three-dimensional problem �d=3�, we have to handle
the full distribution function f�xi ,�i , t�, so that the problem is
more involved.

III. PRELIMINARIES

In this section, we transform Eqs. �6�, �7�, and �8a�–�8c�
into integral equations for �w+ and �w−, which are more con-
venient for numerical analysis.

The Boltzmann equation �6� indicates that g is constant
along the characteristic line x�−��t=const ��=1,2�, i.e., the
projection of the molecular trajectory on the x1x2 plane. Let
us consider the molecules impinging on the plate at time t,
i.e., the molecules at x1=xw+ �or x1=xw−� and −1 /2�x2
�1 /2 with �1−uw�t��0 �or �1−uw�t��0�. If we trace back
the trajectories of such molecules reversing the time, we ei-
ther �i� hit on the plate at a time in the past or �ii� reach the
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initial distribution g0 at t=0 without hitting on the plate. The
case �i� corresponds to the recollision mentioned in Sec. I.
Taking this fact into account, we will express the right-hand
side of Eq. �8c� in terms of g0 and gw �i.e., �w� in the past.

Let us suppose that a molecule that left the plate at point
�x1 ,x2�= (xw�s� ,y2) at time s in the past impinges on the plate
again at point (xw�t� ,x2) at time t. Here, we do not specify
the side of the plate. Then, the x1 and x2 components of the
velocity of the molecule, denoted by w�t ;s� and q�t ,x2 ;s ,y2�
respectively, are given by

w�t;s� =
xw�t� − xw�s�

t − s
, q�t,x2;s,y2� =

x2 − y2

t − s
, �13�

where 0�s� t, −1 /2�y2�1 /2 �Fig. 3�. By definition,
lims→t w�t ;s�=dxw�t� /dt=uw�t�.

Let us assume that the trajectory of the plate xw�t�� and
the quantity �w�x2 , t�� in the boundary condition �8a�–�8c�
are known for all t�� �0, t�. The trajectory is depicted sche-
matically in Fig. 4, where x1=xw�t�� is shown by the solid
curve in the x1t plane. The trajectory in the figure is exag-
gerated in order that the description of the solution method is
facilitated. The projection on the x1t plane of the trajectory of
a molecule is a straight line, and the faster the molecule, the
milder the slope of the line. Let us consider the molecules

impinging on the plate at point (xw�t� , t), which is denoted by
the symbol “A.” An inclined straight line drawn downward
from A indicates the trajectory of a molecule impinging on
the plate at time t with a velocity �x1 component� determined
by the gradient of the line. More specifically, a line, such as
line 5 in Fig. 4, located on the right-hand side of the tangen-
tial line at point A �line 3 in Fig. 4, the gradient of which
corresponds to uw�t�� stands for the trajectory of a molecule
impinging on the right-hand face of the plate �x1=xw+ ,
−1 /2�x2�1 /2�, and a line, such as line 1 in the figure,
located on the left-hand side of the tangential line stands for
that of a molecule impinging on the left-hand face of the
plate �x1=xw− ,−1 /2�x2�1 /2�.

We first consider the molecules impinging on the right-
hand face of the plate. Let us consider the part of the trajec-
tory of the plate �the solid curve in Fig. 4� located on the
right-hand side of the tangential line at A. There are a finite
number of segments of the trajectory that can be seen from
point A without being hidden by the trajectory itself, which
are numbered from below as 1 ,2 , . . . ,n+ �n+=2 in the case of
Fig. 4�. If there is no such segment, we set n+=0. Let sc

+ be
the �dimensionless� time corresponding to the lower end of

the cth segment, and sc
+� that corresponding to its upper end

�c=1,2 , . . . ,n+�. Then, the following relation holds when
n+	1:

w�t;sc
+� = uw�sc

+�, �c = 1,2, . . . ,n+� , �14a�

w�t;sc
+� � w�t;sc

+�� = w�t;sc+1
+ �, �c = 1,2, . . . ,n+ − 1� .

�14b�

Note that relation �14a� does not hold if s1
+=0 �i.e., w�t ;0�

�uw0�.
We define the corresponding quantities also for the mol-

ecules impinging on the left-hand face of the plate. We con-
sider the part of the trajectory of the plate, located on the
left-hand side of the tangential line at A, and we number, as
1 ,2 , . . . ,n− from below �n−=2 in the case of Fig. 4�, the
segments of the trajectory that can be seen from point A
without being hidden by the trajectory itself. Let sc

− be the
time corresponding to the lower end of the cth segment, and

sc
−� that corresponding to its upper end �c=1,2 , . . . ,n−�.

Then, the following relation holds when n−	1:

w�t;sc
−� = uw�sc

−�, �c = 1,2, . . . ,n−� , �15a�

w�t;sc
−� � w�t;sc

−�� = w�t;sc+1
− �, �c = 1,2, . . . ,n− − 1� .

�15b�

Note that relation �15a� does not hold if s1
−=0 �i.e., w�t ;0�

�uw0� �see Fig. 4�.
With the help of sc

+ and sc
+� defined above, the �w+ at point

A, consisting of the contribution of the initial equilibrium
distribution g0 and that of gw+ in the boundary condition on
the plate in the past, can be expressed as

FIG. 3. Definitions of w�t ;s� and q�t ,x2 ;s ,y2�. �a� w�t ;s�, �b�
q�t ,x2 ;s ,y2�.

FIG. 4. Trajectory of the plate and definitions of the symbols.
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�w+�x2,t� = − 2
��
−�

� �
−�

uw�t�

��1 − uw�t��g0��1,�2�d�1d�2

+ �
c=1

n+ �
w�t;sc

+�

w�t;sc
+�� �

q�t,x2;s,1/2�

q�t,x2;s,−1/2�

��1 − uw�t��

��gw+�y2,�1,�2,s� − g0��1,�2��d�2d�1� , �16�

where �c=1
n+ =0 if n+=0. In Eq. �16�, s means s��1 , t� deter-

mined implicitly by the first equation of Eq. �13� with w
=�1, and y2 means y2�x2 ,�1 ,�2 , t� determined by the second
equation of Eq. �13� with q=�2 and s=s��1 , t�, i.e.,

xw�t� − xw„s��1,t�…
t − s��1,t�

= �1,
x2 − y2�x2,�1,�2,t�

t − s��1,t�
= �2. �17�

In Eq. �16�, the first double integral on the right-hand side
indicates the contribution if all the impinging molecules at
time t come from the initial velocity distribution g0. How-
ever, the impinging molecules whose velocity ��1 ,�2� is con-
tained in the ranges of integration in the terms under sum-
mation �c=1

n+ departed from the plate in the past, not from the
initial distribution. We call such molecules recolliding mol-
ecules and their effect the effect of recollision. The correc-
tion caused by the recolliding molecules is made by the
terms contained in the summation �c=1

n+ .
Similarly, �w− is expressed in the form

�w−�x2,t� = 2
��
−�

� �
uw�t�

�

��1 − uw�t��g0��1,�2�d�1d�2

+ �
c=1

n− �
w�t;sc

−��

w�t;sc
−� �

q�t,x2;s,1/2�

q�t,x2;s,−1/2�

��1 − uw�t��

��gw−�y2,�1,�2,s� − g0��1,�2��d�2d�1� , �18�

where �c=1
n− =0 if n−=0, and s and y2 mean s��1 , t� and

y2�x2 ,�1 ,�2 , t� determined by Eq. �17�.
On the other hand, G+�t� and G−�t� in Eq. �10b� are recast

as

G+ =
1

M
�

−1/2

1/2 �
−�

� �
−�

uw�t�

��1 − uw�t��2g0��1,�2�d�1d�2

+ �
c=1

n+ �
w�t;sc

+�

w�t;sc
+�� �

q�t,x2;s,1/2�

q�t,x2;s,−1/2�

��1 − uw�t��2

��gw+�y2,�1,�2,s� − g0��1,�2��d�2d�1

+ �
−�

� �
uw�t�

�

��1 − uw�t��2

�gw+�x2,�1,�2,t�d�1d�2�dx2, �19�

G− = −
1

M
�

−1/2

1/2 �
−�

� �
uw�t�

�

��1 − uw�t��2g0��1,�2�d�1d�2

+ �
c=1

n− �
w�t;sc

−��

w�t;sc
−� �

q�t,x2;s,1/2�

q�t,x2;s,−1/2�

��1 − uw�t��2

��gw−�y2,�1,�2,s� − g0��1,�2��d�2d�1

+ �
−�

� �
−�

uw�t�

��1 − uw�t��2

�gw−�x2,�1,�2,t�d�1d�2�dx2, �20�

where �c=1
n =0 if n=0. The last integrals, containing

��1−uw�t��2 gw�x2 ,�1 ,�2 , t� on the right-hand sides of Eqs.
�19� and �20�, indicate the contribution of the molecules
leaving the plate at time t, whereas the other terms the con-
tribution of the impinging molecules. The latter contribution
consists, as in Eqs. �16� and �18�, of the contribution of the
initial velocity distribution and that of the molecules re-
flected by the plate in the past �recolliding molecules�.

Equations �16� and �18�, with the explicit form of
gw�y2 ,�1 ,�2 ,s� in Eq. �8b�, are the integral equations for
�w+ and �w−, respectively, to be solved together with Eqs. �9�
and �10a� �with Eqs. �19� and �20��, and Eq. �11�.

IV. NUMERICAL ANALYSIS

Let �t be a small interval in t, t�i�= i�t be the ith time step
�i=0,1 ,2 , . . .�, and xw�i�, uw�i�, and G�i� be defined by

xw�i� = xw�t�i��, uw�i� = uw�t�i��, G�i� = G�t�i�� . �21�

Then, we discretize Eq. �9� as follows:

xw�i+1� = xw�i� + uw�i��t , �22a�

uw�i+1� = uw�i� + �F − G�i+1���t , �22b�

where xw�0�=0 and uw�0�=uw0.
Suppose that xw�j�, uw�j�, and gw �or �w� at t= t�j� are

known for j=0,1 ,2 , . . . , i. Then, xw�i+1� is obtained from Eq.
�22a�. In order to obtain uw�i+i� from Eq. �22b�, we need to
compute G�i+1�=G+�t�i+1��+G−�t�i+1��. This can be done by
the use of Eqs. �19� and �20� if we have gw �or �w� at t
= t�i+1�. We obtain the latter quantity using the discretized
version of Eqs. �16� and �18�, as explained below.

Let us consider Eq. �16� at t= t�i+1� and x2=x2�l�,
where x2�l�= l�x2 �l=−N , . . . ,0 , . . . ,N ;�x2=1 /2N�. Thus,
(xw�t�i+1�� ,x2�l�) is a discrete point on the plate at t= t�i+1�.
We first replace uw�t��=uw�i+1��, which is unknown, on
the right-hand side of Eq. �16� with uw�i� that is known.
Then, the integrals containing g0 can be reduced to expres-
sions containing the error function, for which fast algo-
rithms are available �see Sec. V D�. The integrals con-
taining gw+ are evaluated numerically using the dis-
crete data in the past, i.e., xw�j�, uw�j�, and �w+�x2�l� , t�j�� �j
=0,1 , . . . , i ; l=−N , . . . ,0 , . . . ,N�. With the explicit form of
gw+ �Eq. �8b��, the integral containing gw+ under the summa-
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tion in Eq. �16�, after the replacement uw�i+1�→uw�i�, is writ-
ten as

1

�
�

w�t;sc
+�

w�t;sc
+�� �

q�t,x2;s,1/2�

q�t,x2;s,−1/2�

��1 − uw�i���w+�y2,s�

�exp�− ��1 − uw�s��2 − �2
2�d�2d�1,

�at t = t�i+1�, x2 = x2�l�� , �23�

where s=s��1 , t� and y2=y2�x2 ,�1 ,�2 , t� defined by Eq. �17�.
Let us suppose that t�j��j=� ,�+1, . . . ,��� ��sc

+ ,sc
+�� and

sc
+�� t���+1�. Since the trajectory xw�t� is approximated by

straight line segments �Eq. �22��, t���=sc
+ holds. Thus, Eq.

�23� can be expressed as follows:

1

�
� �

j=�

��−1 �
w�t;t�j��

w�t;t�j+1��

+ �
w�t;t�����

w�t;sc
+�� �R�x2,�1,t�Q��1,t�d�1,

�at t = t�i+1�,x2 = x2�l�� , �24�

where

R�x2,�1,t� = �
m=−N

N−1 �
q„t,x2;s��1,t�,−m�x2…

q„t,x2;s��1,t�,−�m+1��x2…

P�x2,�1,�2,t�d�2,

�25a�

Q��1,t� = ��1 − uw�i��exp„− ��1 − uw„s��1,t�…�2
… , �25b�

P�x2,�1,�2,t� = �w+„y2�x2,�1,�2,t�,s��1,t�…exp�− �2
2� .

�25c�

We first approximate R�x2 ,�1 , t� and uw�s��1 , t�� in Q��1 , t�
by linear functions of �1 in each range of integration in Eq.
�24�. Noting that s��1 , t�= t�j� and thus uw�s��1 , t��=uw�t�j��
=uw�j� for �1=w�t ; t�j��, we let

R�x2,�1,t� = R„x2,w�t;t�j��,t… + �R„x2,w�t;t�j+1��,t…

− R„x2,w�t;t�j��,t…�
�1 − w�t;t�j��

w�t;t�j+1�� − w�t;t�j��
,

�26a�

uw„s��1,t�… = uw�j� + �uw�j+1� − uw�j��
�1 − w�t;t�j��

w�t;t�j+1�� − w�t;t�j��
,

for w�t;t�j�� � �1 � w�t;t�j+1��, �j = �,� + 1, . . . ,��� ,

�26b�

where

R„x2,w�t;t�j��,t…

= �
m=−N

N−1 �
q„t,x2;t�j�,−m�x2…

q�t,x2;t�j�,−�m+1��x2�

P„x2,w�t;t�j��,�2,t…d�2,

�27a�

P„x2,w�t;t�j��,�2,t… = �w+�y2„x2,w�t;t�j��,�2,t…,t�j��exp�− �2
2� .

�27b�

Then, we approximate �w+�y2(x2 ,w�t ; t�j�� ,�2 , t) , t�j�� by a lin-
ear function of �2 in each range of integration in Eq. �27a�.
That is, letting

q̂�j,m��x2,t� = q�t,x2;t�j�,− m�x2� , �28�

and noting that

y2„x2,w�t;t�j��, q̂�j,m��x2,t�,t… = − m�x2, �29�

we put

�w+�y2„x2,w�t;t�j��,�2,t…,t�j��

= �w+�− m�x2,t�j�� + ��w+„− �m + 1��x2,t�j�…

− �w+�− m�x2,t�j���
�2 − q̂�j,m�

q̂�j,m+1� − q̂�j,m�
,

for q�t,x2;t�j�,− m�x2� � �2 � q„t,x2;t�j�,− �m + 1��x2…,

�m = − N, . . . ,0, . . . ,N − 1� .

�30�

With these linear approximations in �1 and �2, the integral in
Eq. �24� for each j can be expressed in terms of the error
function. By summing up the results for j, we can compute
Eq. �24� or Eq. �23�. Thus, we can compute the integrals
containing gw+ in Eq. �16� at t= t�i+1� and x2=x2�l�.

Here, we should note the following. If the trajectory x1
=xw�t�� �t�� �0, t�� is convex upward at t in the x1t plane as

in Fig. 4, then t���� for c=n+ becomes t�����=sc
+��= t�i+1� �see

Fig. 4, where n+=2�. Thus, the integral from w�t ; t����� to

w�t ;sc
+�� in Eq. �24� vanishes, and the upper limit of the

integral for j=��−1 in the same equation becomes
lim���0�→0 w�t�i+1� ; t�i+1�−��. But in consistency with the lin-
ear approximation in Eq. �22a�, we should assume xw�t�i+1�
−��=xw�i�+uw�i���t−��, so that it follows from Eqs. �13� and
�22a� that lim���0�→0 w�t�i+1� ; t�i+1�−��=uw�i� �we should in-
terpret that lim���0�→0 w�t�i+1� ; t�i+1�+��=uw�i+1��. On the
other hand, the lower limit of the integral in Eq. �24� for j
=��−1 becomes w�t�i+1� ; t�i��, which reduces to uw�i� by the
use of Eqs. �13� and �22a�. Therefore, the integral for j=��
−1 in Eq. �24� vanishes. In this way, we get rid of
�w+�· , t�i+1��, which is unknown, from the numerical compu-
tation of the right-hand side of Eq. �16� at t= t�i+1� and x2
=x2�l�.

When the velocity of the plate uw approaches the final
velocity uw�, the trajectory x1=xw�t� becomes almost a
straight line. Suppose that it approaches the straight line
from below in the x1t plane. For c=n+ and for large j, the
w�t�i+1� ; t�j��, appearing as the limits of the range of integrals
in Eq. �24�, becomes almost the same as the plate velocity
uw�i�. In this case, many integrals under the summation in Eq.
�24� can be replaced by a single integral over a much wider
integration range.
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In this way, we obtain �w+�x2�l� , t�i+1��. Similarly, by the
use of Eq. �18�, we can obtain �w−�x2�l� , t�i+1��. With these
quantities, G�t�i+1�� are obtained by the discretized versions
of Eqs. �19� and �20�. In this process, the integrals under
�c=1

n+ and �c=1
n− in Eqs. �19� and �20� are computed in the same

way as in the case of Eq. �16� that have been explained
above. The only difference is that ��1−uw�t�� in the integrand
in Eq. �16� is replaced by ��1−uw�t��2 in Eqs. �19� and �20�.
The additional integration with respect to x2 in Eqs. �19� and
�20� is carried out by the Simpson rule.

Starting from i=0, we can determine the sequence
�xw�n� ,uw�n�� �n=1,2 , . . .� by the use of Eq. �22� until a nec-
essary time is reached. We regard this sequence as the nu-
merical solution of our initial-boundary value problem given
by Eqs. �6�, �7�, �8a�–�8c�, �9�, �10a�, �10b�, and �11�.

The reduction of the above solution procedure to the spa-
tially one-dimensional problem �d=1�, as well as its exten-
sion to the three-dimensional problem �d=3�, is straightfor-
ward.

V. RESULTS OF NUMERICAL ANALYSIS

In the long-time limit t→�, the velocity of the plate uw�t�
approaches the final velocity uw�, for which the drag G act-
ing on the plate counterbalances the external force F. In this
situation, �w is obtained from Eqs. �16� and �18� by setting
uw�t�=uw� and the summation terms �the terms under �c=1

n+

and �c=1
n− � to be zero. We can calculate the drag G=G++G−

from Eqs. �19� and �20� by using the above �w and by
setting uw�t�=uw� and the summation terms to be zero. In
this way, for given uw0 and M, the final velocity uw� is de-
termined uniquely by F. In what follows, we take uw� rather
than F as a parameter, so that the dimensionless parameters
characterizing the problem are uw0, uw�, and M �see Eq. �4��.
In addition, we set M =1 in this section, in consistency with
Refs. �8–11�. This might look unphysical because M should
be quite large for a standard solid. However, for the one-
dimensional problem, the result for a given M �and given uw0
and uw�� can be obtained from that for M =1 �and for the
same uw0 and uw�� just by changing the scales of t and x1 by
M �see Sec. V A�. More specifically, uw and �w at t= t̄ for

M =M̄ are given by uw and �w at t=M̄t̄ for M =1. For the
two- and three-dimensional problem, since the change of the

scale by M also applies to x2 and x3, the result for M =1
corresponds to that for M �1 for a plate with a size shrunk
by M. In the two-dimensional problem, for instance, uw and

�w at t= t̄ for M =M̄ for the plate with width 1 are given by

uw and �w at t=M̄t̄ for M =1 for the plate with width M̄. In
any case, the assumption M =1 does not harm any essential
feature of the problem.

In what follows, we will present the results of numerical
analysis for the cases of d=1, 2, and 3 separately. In addi-
tion, some remarks on the numerical computation, including
the discussions on the accuracy, will be given in Sec. V D.
Our main concern is the time evolution of the velocity uw�t�
of the plate, or more specifically, the decay rate of uw�

−uw�t�, for long time t�1. Moreover, one can infer from the
analysis in �11� that the quantities rw+�t�=G+�t�−G0+�t�
and/or rw−�t�=G−�t�−G0−�t� have similar long-time behavior
as uw�−uw�t�. Here, G0�t� is the drag acting on the left and
right sides of the plate when the effect of recollision is ne-
glected, i.e.,

TABLE I. Values of �u�t� at large times �one-dimensional problem�.

t log t

−�u

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 2.036055 2.031885 2.025712 2.016124 2.016933 2.016124

100.00 2.0 2.011302 2.010035 2.008112 2.004999 2.005267 2.004999

316.23 2.5 2.003564 2.003168 2.002563 2.001571 2.001657 2.001571

1000.00 3.0 2.001126 2.001001 2.000810 2.000496 2.000523 2.000496

3162.28 3.5 2.000356 2.000316 2.000256 2.000157 2.000165 2.000157

10000.00 4.0 2.000113 2.000100 2.000081 2.000048 2.000052 2.000048

FIG. 5. Long-time behavior for 0�uw0�uw� �one-dimensional
problem�. �a� log�uw�−uw� vs log t, �b� log�rw+� vs log t, �c� �u vs
log t, and �d� �r+ vs log t, where log� · � is the common logarithm
�log� · �=log10� · ��.
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G0�t� = 
1

M
�

−1/2

1/2 �
−�

� �
�1−uw�t��0

��1 − uw�t��2

�g0��1,�2�d�1d�2 + �
−�

� �
�1−uw�t��0

���1 − uw�t��2�−1�w0�t�exp�− ��1 − uw�t��2

− �2
2�d�1d�2�dx2, �31a�

�w0�t� = � 2
��
−�

� �
�1−uw�t��0

��1 − uw�t��g0��1,�2�d�1d�2,

�31b�

with the correct solution uw�t� inserted. We will also show
the behavior of these quantities. We also introduce the fol-
lowing auxiliary quantities:

�u =
d log�uw� − uw�t��

d log t
, �r =

d log�rw�t��
d log t

, �32�

where log� · � is the common logarithm �log� · �=log10� · ��.
Corresponding to the long-time behavior �1� and �2�, we
have �u�−Ct �C is a constant� and �u�−n, respectively.

For large t, �uw�−uw�t�� becomes very small and loses
accuracy because of the cancellation error. Even if it keeps
the accuracy of, say three figures, it becomes very difficult to
obtain accurate values of the derivative �u by a finite differ-
ence applied to local values of log�uw�−uw�. To avoid this
difficulty, we calculate �u and �r in the following manner.
Let �=log t and let us consider the interval m���m+1
�m: integer�. We divide this interval into 100 small sections
with the grid points � j =m+0.01j �j=0,1 ,2 , . . . ,99�. Then,
we associate each grid point �=� j with an interval Ij = �� j
−0.005,� j +0.005�. On the basis of the data points of
log�uw�−uw�t�� �or log�rw�t��� contained in Ij, we obtain a
linear function of � using the least-squares method and re-
gard its gradient as �u �or �r� at �=� j. Since the standard

TABLE II. Value of �r+�t� at large times �one-dimensional problem�.

t log t

−�r+

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 2.018999 2.020111 2.017545 2.004910 2.000202 1.999407

100.00 2.0 2.006094 2.006417 2.005585 2.001617 2.000090 1.999824

316.23 2.5 2.001935 2.002034 2.001769 2.000518 2.000031 1.999945

1000.00 3.0 2.000613 2.000644 2.000560 2.000164 2.000010 1.999983

3162.28 3.5 2.000194 2.000204 2.000177 2.000052 2.000003 1.999995

10000.00 4.0 2.000061 2.000064 2.000056 2.000016 2.000001 1.999998

FIG. 6. Time evolution for 0�uw0�uw� �one-dimensional
problem�. �a� Trajectory x1=xw�t�, �b� magnified figure of �a�, �c�
uw�−uw�t� vs t, �d� �u and �r− vs log t.

FIG. 7. Long-time behavior for 0�uw0�uw� �two-dimensional
problem�. �a� log�uw�−uw� vs log t, �b� log�rw+� vs log t, �c� �u vs
log t, and �d� �r+ vs log t.
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time step in the present computation is �t=0.01, there are
many data points in each Ij for large t.

A. One-dimensional problem

We start with the 1D problem �d=1�, where the plate is an
infinitely wide plate in the x2x3 plane. In this case, the refer-
ence length L and the reference time �0 should be defined as
arbitrary numbers satisfying the relation �0=L�2kT0 /m��−1/2.
Therefore, we can choose them in such a way that M =1.

We first consider the case of 0�uw0�uw�. Figure 5
shows the results for various values of the parameters
�uw� ,uw0�: more specifically, log�uw�−uw�t�� vs log t is
shown in Fig. 5�a�, log�rw+�t�� vs log t in Fig. 5�b�, �u vs
log t in Fig. 5�c�, and �r+ vs log t in Fig. 5�d� for the follow-
ing values of the parameters:

case 1: �uw�,uw0� = �1.5,0� ,

case 2: �uw�,uw0� = �2.358 15,0� ,

case 3: �uw�,uw0� = �3.556 59,0� ,

case 4: �uw�,uw0� = �1.5,0.75� ,

case 5: �uw�,uw0� = �1.5,1.125� ,

case 6: �uw�,uw0� = �1.5,1.3125� ,

case 7: �uw�,uw0� = �1.5,0� �no recollision� .

Case 7 is the same as case 1, but the effect of recollision
is neglected. Some values of �u and �r+ at large times
for case 1 to case 6 are shown in Tables I and II. It is seen
from Figs. 5�a� and 5�b� that, in all cases except case 7,
log�uw�−uw�t�� and log�rw+�t�� seem to become linearly de-

creasing functions of log t for t larger than 10. Figures 5�c�
and 5�d�, together with Tables I and II, demonstrate that the
gradients, �u and �r+, approach −2, which is consistent with
Eq. �2� with n=d+1, obtained theoretically in �11� under
condition �3�. On the other hand, in case 7, the approach of
uw�t� to uw� is much faster. If log�uw�−uw�t�� is plotted ver-
sus t rather than log t, one can see that the approach is
exponential as in Eq. �1�. The computation shows that in all
the cases, uw�−uw�t� is always positive and decreases mono-
tonically �i.e., the velocity of the plate increases monotoni-
cally to the final velocity�. In other words, the trajectory
x1=xw�t� is always convex upward in the x1t plane, so that
n+=1 and n−=0. Incidentally, rw+ is always positive �except
case 7 for which rw+=0�, and rw−=0.

We next show some results for the case of 0�uw��uw0.
Figure 6 contains the results of the following three cases:

case 8: �uw�,uw0� = �0,1� ,

case 9: �uw�,uw0� = �1.5,6� ,

case 10: �uw�,uw0� = �0,1� �no recollision� .

Case 10 is the same as case 8 except that the effect of recol-
lision is neglected. Figure 6�a� shows the trajectory x1
=xw�t� for case 8 �solid line� and case 10 �dashed line� in the
x1t plane �cf. Fig. 4�. In these cases the plate stops in the
limit t→�, since there is no external force. As one can see
from the figure, xw�t� in case 8 does not increase monotoni-
cally as time goes on. That is, the plate once exceeds the final
position xw��� slightly and then comes back to it. In contrast,
such an overshoot is not observed in case 10. Figure 6�b� is
a magnified figure of Fig. 6�a�, and Fig. 6�c� shows uw�

−uw�t� vs t for the three cases. As seen from Fig. 6�c�, the
plate velocity uw�t�, which is larger than uw� initially, once
becomes slightly smaller than uw� and then approaches it

TABLE III. Values of �u�t� at large times �two-dimensional problem�.

t log t

−�u

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 3.063329 3.056900 3.048011 3.042502 3.033773 3.030717

100.00 2.0 3.019708 3.017834 3.015121 3.013234 3.010493 3.009530

316.23 2.5 3.006203 3.005624 3.004769 3.004169 3.003297 3.003054

1000.00 3.0 3.001961 3.001778 3.001516 3.001286 3.000979 3.000809

TABLE IV. Values of �r+�t� at large times �two-dimensional problem�.

t log t

−�r+

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 3.037372 3.039033 3.035636 3.016899 3.008318 3.005314

100.00 2.0 3.011864 3.012389 3.011320 3.005424 3.002697 3.001738

316.23 2.5 3.003757 3.003922 3.003585 3.001723 3.000859 3.000555

1000.00 3.0 3.001188 3.001241 3.001134 3.000546 3.000272 3.000176
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from below. In cases 8 and 9, the peak of uw�−uw�t� �uw�

=0 in case 8� is attained, respectively, at t= t�=3.4775 and
2.6125, at which the curvature of the trajectory x1=xw�t�
changes its sign �see Fig. 6�b��. In contrast, the overshoot of
uw�−uw�t� is not observed in case 10 where the effect of
recollision is neglected. In Fig. 6�d�, �u and �r− vs log t are
shown for cases 8 and 9. Both of them approach −2. In these
cases, n+=0 and n−=1 for 0� t� t�, whereas n+=1 and n−
=1 for t�� t. In cases 8 and 9, �rw+� is negligibly small com-
pared to �rw−�. The overshoot of the position and the velocity
difference uw�−uw�t� have been predicted theoretically in �9�
in the case of specular reflection under condition �3�.

B. Two-dimensional problem

Next we consider the 2D problem �d=2� that is described
explicitly in Secs. II–IV. Figure 7 shows the results for case
1 to case 6 �see Sec. V A� in the present 2D problem. The
figure corresponds to Fig. 5 for the 1D problem. Some values
of �u and �r+ at large times up to t=103 for case 1 to case 6
are shown in Tables III and IV. In the figure, “case 1 �1D�”
indicates the result for case 1 in the 1D problem. As seen
from Figs. 7�a�–7�d� and Tables III and IV, both of log�uw�

−uw�t�� and log�rw+�t�� seem to become linearly decreasing
functions, with gradient −3, of log t for large t. This is con-
sistent with Eq. �2� with n=d+1 obtained theoretically under
condition �3� in �11�. The results of �u in Fig. 7�c�, in par-
ticular those for cases 5 and 6, show oscillation for log t
larger than about 3 �i.e., t�1000�. The reason for this phe-
nomenon is the following. The decay of �uw�−uw�t�� is faster
in the 2D problem and its value becomes smaller than 10−11

for t larger than 103. This is smaller than the same quantity in
the 1D problem by 3 to 4 orders of magnitude, so that it
suffers from cancellation errors at earlier times. Because of
this factor, the accuracy of the derivative �u seems to be lost

for t�1000 though �uw�−uw�t�� itself is still fairly accurate.
The fact that we need to handle the additional x2 variable in
the 2D problem also increases the computational load. For
�r+ in Fig. 7�d�, the oscillation is not observed yet. As in the
1D problem, uw�−uw�t� is positive and decreases monotoni-
cally, and we have n+=1, n−=0, rw+�0, and rw−=0.

C. Three-dimensional problem

Finally we show some results for the three-dimensional
�3D� problem �d=3�, where the plate �without thickness� is a
rectangle with sides L and H, located initially at X1=0,
−L /2�X2�L /2, and −H /2�X3�H /2 �or x1=0, −1 /2
�x2�1 /2, and −H /2L�x3�H /2L�. Figure 8 shows some
preliminary results, based on rather coarse grids in x2 and x3
�see Sec. V D�, for case 1 in Sec. V A for different aspect
ratios: H /L=1, 2, 4, 8, and 16. As in Figs. 5 and 7, the panels
�a�, �b�, �c�, and �d� show log�uw�−uw�t��, log�rw�t��, �u, and
�r+ vs log t, respectively. The 2D problem �H /L→�� is also
shown by the dashed line in Figs. 8�a� and 8�b�. It is seen
from the figure that �u and �r+ have a tendency to approach
−4, which is consistent with the theoretical result, Eq. �2�
with n=d+1, obtained in �11� under condition �3�. However,
to see it more clearly, we have to obtain a more accurate
numerical solution until much larger t, which requires a very
heavy computation. Therefore, we carry out such computa-
tion only for H /L=1. Figure 9 shows �u and �r+ vs log t
obtained by this computation and Table V gives the corre-
sponding numerical values at long times. It is seen from Fig.
9 and Table V that �u and �r+ tend to approach −4. In Fig.
9�a�, an oscillation, similar to that in Fig. 7�c�, is observed
before log t=2.5 �t=316�. As in the 1D and 2D problems,
uw�−uw�t� is always positive and decreases monotonically,

TABLE V. Values of �u�t� and �r+�t� at large times for case 1
with H /L=1 �square plate� �three-dimensional problem�.

t log t −�u −�r+

15.85 1.2 4.169216 4.094073

31.62 1.5 4.082090 4.047232

100.00 2.0 4.025448 4.014949

316.23 2.5 4.008078 4.004729

1000.00 3.0 ¯ 4.001496

FIG. 8. Long-time behavior for case 1 with various aspect ratios
�three-dimensional problem�. �a� log�uw�−uw� vs log t, �b� log�rw+�
vs log t, �c� �u vs log t, and �d� �r+ vs log t.

FIG. 9. Long-time behavior for case 1 with H /L=1 �square
plate� �three-dimensional problem�. �a� �u vs log t, and �b� �r+ vs
log t.
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TABLE VI. Values of u�−uw�t� for case 1 with different �t �one-dimensional problem�.

t log t

u�−uw�t�

�t=0.1 �t=0.05 �t=0.02 �t=0.01 �t=0.005 �t=0.002 �t=0.001

1 0.0 4.9198�10−2 5.8070�10−2 6.2945�10−2 6.4500�10−2 6.5265�10−2 6.5720�10−2 6.5871�10−2

5 0.7 5.9364�10−4 7.2347�10−4 8.0840�10−4 8.3765�10−4 8.5243�10−4 8.6135�10−4 8.6433�10−4

10 1.0 1.3178�10−4 1.6031�10−4 1.7893�10−4 1.8533�10−4 1.8856�10−4 1.9051�10−4 1.9116�10−4

50 1.7 4.8105�10−6 5.8464�10−6 6.5211�10−6 6.7529�10−6 6.8699�10−6 6.9404�10−6 6.9639�10−6

100 2.0 1.1892�10−6 1.4451�10−6 1.6118�10−6 1.6690�10−6 1.6979�10−6 1.7153�10−6 1.7212�10−6

500 2.7 4.7144�10−8 5.7286�10−8 6.3889�10−8 6.6157�10−8 6.7301�10−8 6.7996�10−8 6.8221�10−8

1000 3.0 1.1773�10−8 1.4305�10−8 1.5954�10−8 1.6520�10−8 1.6806�10−8 1.6978�10−8 1.7036�10−8

TABLE VII. Values of �u�t� for case 1 with different �t �one-dimensional problem�.

t log t

−�u

�t=0.1 �t=0.05 �t=0.02 �t=0.01 �t=0.005 �t=0.002 �t=0.001

31.62 1.5 2.032576 2.034489 2.035645 2.036055 2.036443 2.036470 2.036479

100.00 2.0 2.010204 2.010803 2.011176 2.011302 2.011416 2.011424 2.011427

316.23 2.5 2.003216 2.003407 2.003523 2.003564 2.003599 2.003602 2.003603

1000.00 3.0 2.001017 2.001076 2.001113 2.001126 2.001137 2.001138 2.001138

TABLE VIII. Values of u�−uw�t� for case 1 with different �x2 �two-dimensional problem�.

t log t

u�−uw�t�

�x2=1 /14 �x2=1 /30 �x2=1 /62

1 0.0 5.901367�10−2 5.901460�10−2 5.901480�10−2

5 0.7 9.972841�10−5 9.973847�10−5 9.974059�10−5

10 1.0 9.949553�10−6 9.950565�10−6 9.950777�10−6

50 1.7 6.747572�10−8 6.748259�10−8 6.748403�10−8

100 2.0 8.268005�10−9 8.268846�10−9 8.269023�10−9

500 2.7 6.510437�10−11 6.511103�10−11 6.511236�10−11

1000 3.0 8.121948�10−12 8.122836�10−12 8.123058�10−12
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and we have n+=1, n−=0, rw+�0, and rw−=0 for all the
cases in Figs. 8 and 9.

D. Remarks on numerical computation

In the present computation, we have restricted ourselves
to the case of the diffuse reflection rather than the specular
reflection. The first reason is that the case of the specular
reflection is more tractable mathematically, so that more rig-
orous results are available �8–10�. Therefore, studying the
case of the diffuse reflection is more complementary. The
second and main reason is that the computation is more dif-
ficult for the specular reflection. For the diffuse reflection,
we need to store only xw�t�j��, uw�t�j��, and �w�x2�l� , t�j�� at all
t�j�, from which we can compute the velocity distribution
function of the molecules leaving the plate. In contrast, for
the specular reflection, we have to either store the velocity
distribution function of the leaving molecules at all t�j� or
trace back, at each t�i�, the trajectories of the recolliding mol-
ecules until the initial distribution is reached. These pro-
cesses, which are memory-consuming or time-consuming,
make a long-time computation formidable.

In the computation for Figs. 5 and 6�d� in the 1D problem,
we have set �t=0.01. However, for Figs. 6�a�–6�c�, which
require very accurate computation at short times, we used a
smaller time step �t=0.005. We have also examined the ef-
fect of the time step �t on the solution for case 1. Some
results are shown in Tables VI and VII. Table VI shows the
values of u�−uw�t� at different times for �t=0.1, 0.05, 0.02,
0.01, 0.005, 0.002, and 0.001, and Table VII the values of �u
at large times for the same �t’s. Table VI clearly shows the
fact that our finite-difference scheme �22� is of first order in

�t. According to the same table, we need �t=0.01 to obtain
the accuracy of 3% relative error and �t=0.005 the accuracy
of 1.5% relative error. However, Table VII shows that the
decay exponent �u is much less sensitive to �t and that �t
=0.01 is sufficient to obtain accurate values of �u.

The 2D computation for the data in Fig. 7 was performed
with �t=0.01 and �x2=1 /14. Here, we have checked the
effect of �x2 on the solution with finer grid points, �x2
=1 /30 and 1/62, for case 1. Some results are shown in
Tables VIII and IX. To be more specific, Table VIII shows
u�−uw�t� at different times for �x2=1 /14, 1/30, and 1/62,
and Table IX the corresponding values of �u at some large
times. As seen from these tables, �x2=1 /14 gives a suffi-
ciently accurate result.

The 3D computation, which is much heavier than 2D
computation, prevents from using fine grid points in x2 and
x3. Therefore, we have used �t=0.01 and �x2=�x3=1 /6
�i.e., 7�7�H /L� points on the plate� for the preliminary re-
sult shown in Fig. 8, where �x3 is the grid size in the x3
direction. However, in order to establish the reliable long-
time behavior, we carried out a computation with finer grid
points in x2 and x3 for the square plate �H /L=1, case 1�, i.e.,
a computation with �t=0.01 and �x2=�x3=1 /14. Figure 9
demonstrates such a result. In this connection, we have car-
ried out the same computation with larger time steps, �t
=0.1, 0.05, and 0.02, to see the effect of the time step. The
results are shown in Tables X and XI.

The computation was carried out with quadruple preci-
sion. If we perform the 2D computation with double preci-
sion, the strong oscillation exhibited in Fig. 7�c� appears
at much earlier times. It should be mentioned that we
have employed a fast algorithm for the error function pro-
vided by Ooura, available from his home page �http://
www.kurims.kyoto-u.ac.jp/~ooura/index.html�. The algo-
rithm is for double precision, but we have confirmed that it
gives an accuracy of 19 significant figures if it is used in a
quadruple-precision computation.

The computation has been carried out on a personal com-
puter with CPU: Intel�R� Xeon�R� X5355 2.66GHz�8.

VI. CONCLUDING REMARKS

In this paper we have investigated numerically an un-
steady motion of a plate in a free-molecular gas at rest

TABLE IX. Values of �u�t� for case 1 with different �x2 �two-
dimensional problem�.

t log t

−�u

�x2=1 /14 �x2=1 /30 �x2=1 /62

31.62 1.5 3.063329 3.0633287 3.0633287

100.00 2.0 3.019708 3.0197084 3.0197083

316.23 2.5 3.006202 3.0062039 3.0062040

1000.00 3.0 3.001961 3.0019547 3.0019512

TABLE X. Values of u�−uw�t� for case 1 �H /L=1� with different �t �three-dimensional problem�.

t log t

u�−uw�t�

�t=0.1 �t=0.05 �t=0.02 �t=0.01

1 0.0 4.1660�10−2 4.9610�10−2 5.3867�10−2 5.5210�10−2

5 0.7 8.7286�10−6 1.0632�10−5 1.1883�10−5 1.2317�10−5

10 1.0 4.1238�10−7 4.9498�10−7 5.4796�10−7 5.6604�10−7

50 1.7 5.3709�10−10 6.4109�10−10 7.0732�10−10 7.2982�10−10

100 2.0 3.2744�10−11 3.9065�10−11 4.3088�10−11 4.4454�10−11

500 2.7 5.1292�10−14 6.1284�10−14 6.7502�10−14 6.9722�10−14

1000 3.0 3.1086�10−15 3.7748�10−15 4.2188�10−15 4.4409�10−15
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caused by a uniform external force and by a drag exerted by
the gas molecules, with special interest in the rate of ap-
proach to the final steady motion. The study complements
the preceding mathematical results �8–11� on a similar prob-
lem �a circular disk or general convex body, rather than a
plate, was considered in these works� that showed a slow
approach in proportion to some inverse power of time. In
these works it was also revealed that the slow approach is
caused by the fact that some of the molecules that have been
reflected by the body in the past are hit by the body again
�recollision�. The theoretical results, however, are based on
the assumption that the initial velocity of the body is very
close to its final velocity. In the present study we were able
to provide some numerical evidences, in the case of diffuse
reflection studied in �11�, that the same result holds when the
initial velocity of the body is quite different from the final
velocity.

The motion of a body in a free-molecular gas is encoun-
tered in connection with the motion of nanoscale aerosol
particles, that of satellites or spacecrafts, etc. When the mo-
tion is unsteady and undergoes acceleration, deceleration, ro-
tation, etc., one expects that the gas molecules keep a
memory from the initial stage because of the absence of in-
termolecular collisions that destroy the memory, and this fact

may affect the motion of the body at later times. The present
study, as well as the previous studies �8–11�, clarifies the
basic properties of the effect of long memory, which mani-
fests itself in the form of recollision of the molecules. There
are some interesting studies of migrations of a convex body
in a free-molecular gas caused by various kinds of forces
�thermophoresis, shearing phoresis, etc.� �17–19�. However,
in spite of the fact that these migrations contain unsteady
motions of the body, the effect of recollision is not taken into
account in these works. That is, the distribution function of
the gas molecules impinging on the body is assumed to be
given by that at infinity at any instant. If the effect of recol-
lision is taken into account, it may change the trajectory of
the body significantly. The present study provides a step to
tackle such problems.
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